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Abstract

High-speed helicopter rotor impulsive noise predic-
tion is an important current problem of aeroacoustics.
The deterministic quadrupoles have been shown to
contribute signi�cantly to high-speed impulsive (HSI)
noise of rotors, particularly when the phenomenon
of delocalization occurs. At high rotor-tip speeds,
some of the quadrupole sources lie outside the sonic
circle and move at supersonic speed. Brentner has
given a formulation suitable for e�cient prediction of
quadrupole noise inside the sonic circle. In this pa-
per, we give a simple formulation based on the acous-
tic analogy that is valid for both subsonic and super-
sonic quadrupole noise prediction. Like the formula-
tion of Brentner, the model is exact for an observer
in the far �eld and in the rotor plane and is approx-
imate elsewhere. We give the full analytic deriva-
tion of this formulation in the paper. We present the
method of implementation on a computer for super-
sonic quadrupoles using marching cubes for construct-
ing the in
uence surface (� surface) of an observer
space-time variable (x; t). We then present several ex-
amples of noise prediction for both subsonic and su-
personic quadrupoles. It is shown that in the case
of transonic 
ow over rotor blades, the inclusion of
the supersonic quadrupoles improves the prediction of
the acoustic pressure signature. We show the equiv-
alence of the new formulation to that of Brentner for
subsonic quadrupoles. It is shown that the regions
of high quadrupole source strength are primarily pro-
duced by the shock surface and the 
ow over the lead-
ing edge of the rotor. The primary role of the super-
sonic quadrupoles is to increase the width of a strong
acoustic signal.

1 Introduction

The e�cient prediction of the high-speed impulsive
(HSI) noise of helicopter rotors is currently an impor-
tant problem of aeroacoustics. The cause of this noise
has been identi�ed since the late 1970's1, 2 as the deter-
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ministic quadrupoles in the vicinity of the rotor, and,
in the case of delocalization, beyond the sonic circle
and the blade tip. Many schemes have been proposed
by researchers based on the acoustic analogy3{9 and
the Kirchho� method.10, 11 At present, most of these
schemes are limited to subsonic quadrupole source
motion|supersonic quadrupole noise prediction ap-
pears to require further work to improve e�ciency and
robustness. In the case of subsonic quadrupole noise
prediction, a method based on a formulation by Brent-
ner, formulation Q1A, exists7 which is exact for an in-
plane, far-�eld observer but is approximate elsewhere.
This method has been implemented in the code WOP-
WOP+6, 7 and has been shown to be highly e�cient
and robust. There is a need for an e�cient and robust
method of prediction of the supersonic quadrupole
noise. We present a new formulation|based on the
same model used by Brentner|that is valid for both
subsonic and supersonic quadrupole noise prediction.

We give the derivation of the main result of this
paper, formulation Q2, in Section 2. We start with
an exact solution of the wave equation for quadrupole
sources of the Ffowcs Williams{Hawkings (FW{H)
equation given by Farassat and Brentner.12 In this
solution, volume integrals involving the quadrupole
sources are only di�erentiated with respect to observer
time. We write these volume integrals in terms of a
surface integral over the collapsing sphere and a source
time integral. For an observer in the rotor plane and
in the far �eld, the collapsing sphere is approximated
as a right cylinder normal to the rotor disc and the
quadrupole source strength is integrated along lines
normal to the rotor disc and treated as sources on the
rotor disc. We then hypothesize that the quadrupole
noise everywhere can be predicted using these sur-
face sources. This hypothesis has been validated by
Brentner and Holland.6 The idea of approximating
the volume (quadrupole) sources with equivalent sur-
face sources was originally proposed and numerically
implemented by Schmitz et al.1 for the far-�eld solu-
tion of the FW{H equation. Later this idea was also
implemented by Schultz and Splettstoesser,3 Brentner
and Holland,6 and Brentner.7 Our main contribution
has been to use this idea in obtaining closed-form so-
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lutions of the same equation, formulations Q1A and
Q2, which seem to result in more e�cient prediction
of HSI noise. The new formulation presented here is
very simple and is valid for both subsonic and super-
sonic quadrupoles. This gives us the opportunity to
compare noise predictions from formulations Q1A and
Q2 for subsonic quadrupoles.

In Section 3 we discuss how formulation Q2 is im-
plemented in a new testbed code called WOPWOP2+.
The quadrupole sources beyond the sonic circle can
have multiple emission times and the usual solution of
the wave equation for subsonic surface sources (e.g.,
formulations 1, 1A, and Q1A) will have a singular-
ity known as the Doppler singularity. To avoid this
Doppler singularity, it is necessary to use a �-surface
formulation.13, 14 The method of construction of the
� surface used in WOPWOP2+ is known as marching
cubes15|an algorithm originally developed for com-
puter graphics.16

Some examples of HSI noise prediction for a hover-
ing rotor is presented in Section 4. First we present a
comparison of the results of noise prediction for sub-
sonic quadrupoles based on formulations Q1A and Q2.
It is shown that the results agree well with each other.
A study of the surface source strength (i.e., the integral
of quadrupole source strength along the line normal to
rotor disc) shows that the primary contributions to the
quadrupole noise come from the shock surfaces on and
beyond the blade and the 
ow over the leading edge
of the blade. It is also shown that the inclusion of the
quadrupole sources beyond the sonic circle improves
the prediction of the width of the main pulse and the
shape of the acoustic pressure signature and agreement
with experimental data. Finally, we demonstrate the
robustness of the formulation by performing predic-
tions for out-of-plane and near-�eld observers. Con-
cluding remarks follow in Section 5.

2 Formulation and Solution of the Problem

We begin with the solution of the following wave
equation for quadrupole noise radiation from the
Ffowcs Williams{Hawkings equation:

2p0Q(x; t) =
�@2

@xi@xj
[TijH(f)] (1)

where Tij is the Lighthill stress tensor, H(f) is the
Heaviside function, and f = 0 describes the blade sur-
face (f > 0 outside the blade). The solution for this
equation was given by Farassat and Brentner12 as fol-
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Figure 1. The actual and approximate collapsing
sphere surfaces in the vicinity of the rotor blade.
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where the quantity Trr is the double contraction
Tij r̂ir̂j , and r̂i are the components of the unit vector
in the radiation direction. In addition, d
 is an ele-
ment of the collapsing sphere surface g = 0. We now
assume that the observer is in the far �eld and on the
rotor plane. The part of the collapsing sphere inter-
secting the source region near the rotor blade can be
approximated by a right cylinder normal to the rotor
plane. This is shown in �gure 1.
Let us assume that the rotor is nominally in the

y1y2{plane and y3 is, therefore, perpendicular to this
plane (i.e., the rotor tip-path plane). We integrate
the inner integrals of equation (2) with respect to y3
over the approximate collapsing sphere surface. Let us
de�ne

Qij(y1; y2; �) =

1Z

�1

Tij dy3 (3)

and use the relation

d� = c d�d� (4)
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where d� is the length of an element of the curve de-
�ned by the intersection of the collapsing sphere with
the rotor disc. Equation (2) can now be written as

4�p0Q(x; t) =
1
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The integrals in equation (5) are all over the entire
y1y2{plane. This allows us to bring the observer-time
derivatives inside the integrals without worrying about
the limits of integration.

The next step is the most crucial in the derivation of
the �nal result. We note that @=@t = @=@tjx meaning
x in the frame �xed to the undisturbed medium is kept
�xed in this di�erentiation. It must be understood
that all velocity terms in Qij(x; t) are speci�ed with
respect to the frame �xed to the undisturbed medium.
However, if we use a change of coordinates (x; t) !
(�; �), where the �-frame is �xed to the rotor blade,
we have
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where � is the position vector in the rotating frame and
� is the source time. HereV = @�=@� is the velocity of
the point with position vector � speci�ed in the frame
�xed to the undisturbed medium. We note that V is
in the rotor plane. It is important to recognize that
Qij(�; �) actually stands for Qij [x(�; �); t(�)], where
t(�) = � . Notice that the operator L� operates on Qij

only. Using this operator notation in equation (5), we
get
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To write this equation in �nal form we expressV(�; �)
as follows:

V = VF + ! � � (8)

where VF is the forward velocity of the rotor and �

is the position vector of the source Qij in the rotor
plane with the origin at the rotor center. We assume
that both VF and !, the angular velocity vector of

the rotor, are time independent. From equation (8),
we have
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where @=@� is the directional derivative in the � (radial
direction) and � = j�j. We also have
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and V = (V1; V2). Therefore, L
2
� can be written as
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When this expression is used in equation (7), we get
a singularity free expression for supersonic quadrupole
noise prediction. We note that equation (7) has sec-
ond space and time derivatives of Qij as well as �rst
space derivatives in the �1�2{plane (the rotor plane).
These quantities are available in the CFD postproces-
sor that is used to compute Qij for acoustic calcula-
tions. We will refer to equation (7) as formulation Q2.
As it stands, formulation Q2 is valid for subsonic and
supersonic quadrupole noise prediction for helicopter
rotors in hover or forward 
ight. Note that this equa-
tion is very simple and has no singularities. We have
assumed that the shocks on the blades are smeared
over one or more grid cells and that Qij has continu-
ous second derivatives over the rotor plane (although
the magnitude of the second derivative can be very
high at the foot of the shocks). These assumptions are
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generally satis�ed in CFD calculations for helicopter
rotor aerodynamics.

2.1 Analysis of the Main Result

We will now do an order of magnitude study of the
far-�eld term of our main result, equation (7). We
can draw very useful conclusions from such a study
as will be shown below. We know that the peak of
directivity of quadrupole noise is in the rotor plane
with the observer ahead of the helicopter. Let us put
the observer in such a location in the far �eld. Then in
the frame �xed to the undisturbed medium (where x1-
axis is the 
ight direction and the x3-axis is normal to
the rotor plane), the components of the unit radiation
vector can be approximated as r̂ = (1; 0; 0). The major
contribution to the far-�eld quadrupole noise comes
from Q11 which we will look at closely below.

The numerator of the integrand of the far-�eld term
is

L2
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0)2Q11

+(! �VF ) � rQ11 (15)

We can now estimate the order of magnitude of each
term in equation (15) as follows. Let the advancing
tip speed be denoted by VAT and ! = j!j. Then, we
see that
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In these equations, the derivative @=@�1 is the direc-
tional derivative in the chordwise direction. Note that
for a hovering rotor @Q11=@� , @

2Q11=@�
2, and VF are

all zero, therefore the only remaining component is
(V�r0)2Q11. Since !, in general, is small for helicopter
rotors, we can see that the dominant term in forward

ight is also most likely the term (V � r

0)2Q11. The
right side of equation (16c) can be further estimated
as

V 2
AT
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@�21
�

V 2
ATQ11
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where ��1 is the chordwise scale over which signi�cant
change in Q11 occurs. This leads us to suspect that the
dominant sources of quadrupole noise will be located
along the leading edge of the rotor blade (��1 � LE

Figure 2. Contours of L2
�Q11 in the vicinity of a hov-

ering UH-1H rotor, MH = 0:925.

radius) and along the shock trace in the rotor plane
on and beyond the rotor tip (��1 � width of the pro-
jection of the shock surface in the rotor plane). These
conclusions are veri�ed by the computation of L2

�Q11

for a hovering UH-1H model rotor blade at tip Mach
number 0:925 shown in �gure 2. It is apparent in the
�gure that the primary source of HSI noise is the shock
wave (as proposed by Farassat and his colleagues|see
references 12,17{19) and the 
ow over the leading edge
of the blade. The signi�cance of the quadrupole source
in the leading edge region has not been widely recog-
nized in previous work.

3 Numerical Implementation

A new code, called WOPWOP2+, is used to demon-
strate the utility of formulation Q2. WOPWOP2+ dif-
fers signi�cantly from WOPWOP+6, 7 in that it uses a
�-surface formulation to compute thickness and load-
ing noise, as well as the quadrupole noise. The con-
struction of the � surface and subsequent integration
over the � surface is performed using the method of
marching cubes integration developed by Brentner.15

The numerical calculation of quadrupole noise has
been divided into two stages: a preprocessing stage
in which the integration of the Lighthill stress ten-
sor in the normal direction, indicated in equation (3),
is carried out, and an evaluation stage in which the
quadrupole contribution to the acoustic pressure speci-
�ed in equation (7) is determined. Both the preproces-
sor and the acoustic calculation are described brie
y
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Figure 3. Typical quadrupole grid used for WOP-
WOP2+ calculations for hovering UH-1H rotor. Note
that only every 4th grid line is shown in the chordwise
direction.

in this section. More information on the preprocessor,
which is the same preprocessor that is used by WOP-
WOP+, can be found in reference 6.

3.1 Preprocessor

Although the evaluation of Qij can be performed
independently of observer position and retarded time,
the preprocessor must read in the CFD solution, in-
terpolate the solution at the necessary quadrature lo-
cations, and then perform the numerical quadrature

in the direction normal to the rotor disc. The prepro-
cessor needs knowledge of both the CFD grid topol-
ogy and the solution format. In the implementation
used for this work, the interpolation of the CFD data
is two dimensional and is done one radial station at
a time. For a given radial station, data are inter-
polated to quadrature points needed for composite
Gauss-Legendre integration, on lines normal to the ro-
tor plane. The lines are uniformly distributed in the
chordwise direction. A two-dimensional linear least-
squares interpolation is used to interpolate the density,
momentum, and energy at each quadrature point. The
Lighthill stress tensor Tij is evaluated with the inter-
polated data. The value of Qij on the rotor disc is de-
termined at each chordwise location before moving to
the next radial station. The results are stored for the
acoustic calculation stage. A typical grid generated by
the quadrupole preprocessor is shown in �gure 3.

3.2 WOPWOP2+

The primary function of the WOPWOP2+ code is to
perform the integration indicated in equation (7) nu-
merically. Although the integration is over the entire
rotor disc plane, in practice the source strength is zero
over a large part of the plane; hence, the quadrupole
integration is only performed near the rotor blade (see
�gure 3). The main di�culty in the numerical evalu-
ation of equation (7) is the construction of the � sur-
face. The � surface is the collection of points in space-
time that emit signals that reach the observer at one
particular observer time. The integration is complex
because the pointwise mapping between the physical
source plane and the � surface is not known explicitly.
Special care must be taken in the construction because
in practice the � surface may be composed of several
disjoint pieces when the source motion is supersonic|
exactly the case we are interested in.

The marching cubes method begins constructing the
� surface by choosing the source time and computing
the corresponding observer time and integrand value
at each grid point. If the observer times are com-
puted and stored for each desired source time, the dis-
crete computational data become a three-dimensional
array; two computational indices parameterize the sur-
face spatially and a third index accounts for the source
time. In this three-dimensional computational space,
isosurfaces of observer time t are, by de�nition, dis-
tinct realizations of the � surface. The extension of
the marching-cubes algorithm for surface integration15

determines how the surface intersects a logical cube in
the three-dimensional computational grid, computes
the contribution to the integral from that portion of
the surface, and then moves (or marches) to the next
cube. The topology of the surface within a single cube
can be determined uniquely by examining the function
value (observer time in this case) at each of the cube
vertices and comparing this value to the desired sur-
face value. A table lookup is then used to determine
the exact topology of the surface in the current cube.
The surface is formed by a set of triangular panels that
have vertices on the edges of the cubes. The value of
the surface integral over each triangle is approximated
as the average integrand value of the triangle vertices
multiplied by the triangle area. Linear interpolation
is used to determine the integrand values at the tri-
angle vertices based on the previously computed value
at the cube vertices. The marching cubes algorithm
is generic|the only di�erence in computing thickness,
loading, or quadrupole noise is the value of the inte-
grand computed at each grid vertex. (For more detail
on the marching cubes algorithm, see references 15 and
16.)

For simplicity, the current WOPWOP2+ code only
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implements formulation Q2 for a hovering rotor. For
a hovering rotor, L�Qij and L2

�Qij can be written in
the simpli�ed form

L�Qij =!�
@Qij

@�1
(18a)

and

L2
�Qij =!

2�2
@2Qij

@�21
(18b)

where @=@�1 is the directional derivative in the az-
imuthal direction and � = j�j. Equation (18) is imple-
mented numerically in WOPWOP2+ with a second-
order accurate central-di�erence operators.

4 Numerical Results

In this section we �rst make a comparison of the
acoustic pressure signatures of a hovering model rotor
from WOPWOP+ and WOPWOP2+ which use for-
mulations Q1A and Q2, respectively. Then, we present
the comparison of the predicted and measured acous-
tic pressure signatures for the same hovering model
rotor at four di�erent tip Mach numbers. At the three
highest tip Mach numbers, the phenomenon of delocal-
ization occurs and WOPWOP2+must be used for HSI
noise prediction if the contribution of the supersonic
quadrupoles is to be included in the prediction. The
remaining analysis examines the role of the supersonic
quadrupoles and the robustness of the formulation.

A model-scale rotor test conducted by Boxwell et al.
in 197820 and repeated later by Purcell in 198821 is
used for comparison. The measured data was for non-
lifting hovering rotor generating HSI noise. The rotor
was a 1=7th scale UH-1H main rotor with straight un-
twisted blades and NACA 0012 airfoil section. The
rotor radius R was 1:045 m with a chord of 7:62 cm.
The measured data reported here are all from a mi-
crophone in the rotor plane and at 3:09R from the
rotor tip. The Euler solutions utilized as input in this
numerical work were provided by Baeder and are de-
scribed in references 5 and 22. The Euler solutions
are also used for direct comparison with the acoustic
prediction when experimental data is unavailable.

4.1 Comparison of Formulations

Figure 4 shows a comparison of the predicted acous-
tic pressure signatures from WOPWOP+ (formula-
tion Q1A) and WOPWOP2+ (formulation Q2) at
tip Mach number 0:925. The thickness and loading,
quadrupole, and total acoustic pressure time histo-
ries predicted by each of the codes are also shown
in this �gure. Although the supersonic quadrupoles
are important in prediction of the acoustic pressure

signature because delocalization occurs at this operat-
ing condition, WOPWOP+ can only handle subsonic
quadrupole sources; therefore, we have only used the
subsonic quadrupole sources in both predictions for
this comparison. We have utilized the marching cubes
approach to construct the � surface (in
uence surface)
of the rotor blade and the quadrupole source surface in
WOPWOP2+. A good agreement in this comparison
proves two points. First, it will tell us that the con-
struction of the � surface is correct in WOPWOP2+.
Second, the two formulations Q1A and Q2 are equiv-
alent. Both these points are evident in �gure 4. This
�gure also shows that the individual components due
to thickness and loading and the quadrupole sources
as well as the total acoustic pressure signatures from
the two codes agree well. Thus, we have established
some con�dence in using WOPWOP2+ for prediction
of HSI noise.

4.2 Comparison with Measured Data

We now present HSI noise calculations for tip Mach
numbers 0:88, 0:9, 0:925, and 0:95 in �gure 5. The
quadrupole grid extends 0:788R beyond the blade tip
for all the WOPWOP2+ calculations shown in �gure
5. For comparison, we have also shown the WOP-
WOP+ signature which includes quadrupole sources
up to the sonic circle. It is seen that the agreement of
the WOPWOP2+ signature with the measured data
is excellent and better than that of WOPWOP+ for
each case. For the more intense cases, MH = 0:925
and 0.95, the agreement of the WOPWOP+ predic-
tion with the measured acoustic pressure signature is
not fully satisfactory. The acoustic pressure signa-
ture fromWOPWOP2+, however, agrees well with the
measured signature even in the value of the negative
peak. We have, thus, demonstrated, the ability to pre-
dict the noise from supersonic quadrupoles in the case
of delocalized shocks and the resulting improvements
in the overall shape and level of the acoustic pressure.

We point out that the WOPWOP2+ predictions
have oscillations which appear to be numerical in ori-
gin for the delocalized cases MH = 0:9; 0:925, and
0:95. We have been unable to fully determine the cause
of these oscillations, but we know that the oscillations
come from the supersonic quadrupole sources some-
what beyond the sonic circle. Note in Figure 3 that the
radial spacing of the quadrupole grid, which is based
upon the radial spacing of the CFD grid, grows sig-
ni�cantly beyond the tip of the rotor blade. We do
not believe the oscillations in the acoustic signal are
primarily a result of inaccuracies in the numerical com-
putation of the derivatives speci�ed in equation (18)
because the largest gradients are located on the blade
surface and are included in the subsonic quadrupole
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Figure 5. Comparison of WOPWOP+ ( ) and WOPWOP2+ ( ) predicted acoustic pressure with experi-
mental data21 ( ) for hovering model UH-1H rotor. Quadrupole grid in WOPWOP+ prediction extended almost to
sonic circle and in WOPWOP2+ predictions extended 0:788R beyond the rotor tip. (a)MH = 0:88; (b)MH = 0:90;
(c) MH = 0:925; (d) MH = 0:95.
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Figure 4. Comparison of WOPWOP+ prediction (�)
with subsonic WOPWOP2+ prediction ( ) for a
UH-1H hovering rotor, MH = 0:925. Quadrupole grid
extends 0:075R beyond rotor tip. (a) thickness and
loading components; (b) quadrupole component; (c)
total acoustic pressure.

calculations. Further work is necessary to understand
the source of the oscillations and how to eliminate
them.

It is well known that the quadrupole accounts for
the nonlinear propagation e�ects caused by the �nite
particle velocity and the variation of sound speed in
the physical problem. The calculations shown in �g-
ure 5 seems to indicate that the primary role of the
supersonic quadrupoles is to increase the pulse width
of intense propagating waves. The width of the main
pulse of the signatures predicted by WOPWOP2+ is
only slightly narrower than the measured signature.
Even for theMH = 0:88 case, which is not delocalized,
the supersonic quadrupoles improve the agreement
by increasing the width and amplitude of the acous-
tic signal. For the delocalized cases, the supersonic
quadrupoles also decrease the slope, and thus improve
the agreement, of the triangular shape proceeding the
rapid shock-like increase in acoustic pressure. Figure 6
shows the e�ect of the extent of the quadrupole grid for
the particularly intense MH = 0:95 case. Three sep-
arate computations were made with the quadrupole
source grid extending beyond the rotor tip 0:05R,
0:79R, and 1:86R, respectively. The quadrupole grid
is shown in �gure 6a with the three grid extents indi-
cated. The �rst WOPWOP2+ computation, 0:05R
beyond the rotor tip, is essentially identical to the
WOPWOP+ calculation shown in �gure 5d. Notice
that the prediction for the largest grid extent, 1:86R
beyond the rotor tip, agrees very well with the data in
both waveform amplitude, width, and shape. (We sus-
pect that the oscillations in the signal after the wave-
form are related to the extremely coarse radial resolu-
tion of the grid between r=R = 1:79 and r=R = 2:86.)
These computations suggest two things: even though
the quadrupole correctly predicts the nonlinear prop-
agation (i.e., the widening and changing of the wave-
form shape), it is probably an ine�cient tool for pre-
dicting the nonlinear propagation because an accurate
CFD computation must proceed the quadrupole pre-
diction; and it seems likely that the nonlinear propa-
gation could be more appropriately by another, possi-
bly one-dimensional method, starting with the acous-
tic signal somewhat closer to the rotor.

4.3 Formulation Robustness

In this section we wish to demonstrate the robust-
ness of the method by performing predictions which
violate some of the assumptions leading to formula-
tion Q2. First we predict the noise for out-of-plane
observer and compare the acoustic pressure with an
Euler solution. Secondly, we predict the noise for a
very near-�eld observer.

The acoustic pressure was predicted using WOP-
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Figure 6. E�ect of quadrupole grid extent shown for
hovering UH-1H rotor, MH = 0:95. (a) quadrupole
grid (every 10th grid line in chordwise direction
shown); (b) predicted acoustic pressure for three
quadrupole grid extents: , 0:05R beyond ro-
tor tip (subsonic); , 0:79R beyond rotor tip; ,
1:86R beyond rotor tip; experimental data.21

WOP+ and WOPWOP2+ at two observer locations
directly below the an in-plane observer at 3:09R from
the rotor hub. These observers are 10 and 20 deg be-
low the rotor plane, respectively. In �gure 7 we show
these prediction for the MH = 0:9 case. No measured
data are available at these observer locations, there-
fore, we have interpolated the Euler solutions5 used as
input. It is seen that the two sets of calculations agree
well with each other, but the WOPWOP2+ result is
slightly better for the 10 deg down observer. Further-
more, as expected, the peak negative value of the main
pulse of the acoustic pressure reduces with increasing
observer angle. The quadrupole contribution below 20
deg is very small.

In a second comparison, shown in �gure 8, we have
predicted the acoustic pressure with WOPWOP2+ at
an in-plane observer 1:094R from the rotor hub. This
observer is inside the sonic circle and is less than two
chordlengths from the rotor tip at the closest dis-
tance. The quadrupole grid extends almost to the
observer. WOPWOP+ was unable to determine the
retarded time satisfactorily for this severe test case.
The WOPWOP2+ prediction slightly underpredicts
the Euler solution; nevertheless, the comparison is re-
ally extremely good at this very near-�eld location. In
particular, the WOPWOP2+ prediction agrees per-
fectly with the Euler data both before the negative
peak and for the curved part of the signal at the top
of the shock-like structure after the negative peak. The
far-�eld and near-�eld quadrupole terms (terms with
1=r dependence and terms with 1=r2 and 1=r3 depen-
dence, respectively) from equation (7) are also shown
in �gure 8. Clearly the near-�eld quadrupole terms|
usually neglected by other researchers|contribute sig-
ni�cantly to the correct prediction of waveform shape
at this close distance. Figure 8 demonstrates the im-
portance of keeping all of the terms so that the acous-
tic prediction can be compared directly with CFD.12

Both �gures 7 and 8 demonstrate the robustness of
formulation Q2.

5 Concluding Remarks

We have presented a new quadrupole noise predic-
tion method based on a new analytic result, called for-
mulation Q2, valid for both subsonic and supersonic
quadrupole sources. The new formulation is very sim-
ple and without any singularity. The procedure for
implementation of the result is discussed in the pa-
per. This new code is called WOPWOP2+. We have
demonstrated that formulation Q2 is equivalent to for-
mulation Q1A of Brentner used in WOPWOP+ for
subsonic quadrupole sources. By order of magnitude
study of the formulation Q2 far-�eld integrand, we
have shown that the shock surfaces and the stagna-
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Figure 7. Comparison of WOPWOP+ ( ), WOP-
WOP2+ ( ), and Euler5, 22 (�) predicted acous-
tic pressures for hovering model UH-1H rotor, MH =
0:90. (a) 10 deg below rotor plane; (b) 20 deg below
rotor plane.
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Figure 8. Near-�eld noise prediction at in-plane ob-
server located 1:094R from rotor hub for hovering
model UH-1H rotor, MH = 0:90 with quadrupole grid
0:0935R beyond rotor tip. , far-�eld quadrupole
component; , near-�eld quadrupole components;

, WOPWOP2+ total acoustic pressure; �, Eu-
ler5, 22 total acoustic pressure.

tion 
ow at the leading edge of the blade are regions
of high source intensity. We have shown that for rotors
operating at high tip Mach numbers|before and after
delocalization|the new formulation predicts acoustic
pressure signatures which agree well with the experi-
mental data in both the shape and the level of the main
pulse of the signature. We have also shown that the
supersonic quadrupoles widen and modify the shape of
the waveform. A new and robust option is now avail-
able for prediction of HSI noise of helicopter rotors
based on formulation Q2.
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